Optimal edge filters explain human blur detection.
نویسندگان
چکیده
Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature, or defocus due to relative depth. Edge blur also drives accommodation and may be implicated in the correct development of the eye's optical power. Here we use classification image techniques to reveal the mechanisms underlying blur detection in human vision. Observers were shown a sharp and a blurred edge in white noise and had to identify the blurred edge. The resultant smoothed classification image derived from these experiments was similar to a derivative of a Gaussian filter. We also fitted a number of edge detection models (MIRAGE, N(1), and N(3)(+)) and the ideal observer to observer responses, but none performed as well as the classification image. However, observer responses were well fitted by a recently developed optimal edge detector model, coupled with a Bayesian prior on the expected blurs in the stimulus. This model outperformed the classification image when performance was measured by the Akaike Information Criterion. This result strongly suggests that humans use optimal edge detection filters to detect edges and encode their blur.
منابع مشابه
An Image Based Technique for Enhancement of Underwater Images
The underwater images usually suffers from non-uniform lighting, low contrast, blur and diminished colors. In this paper, we proposed an image based preprocessing technique to enhance the quality of the underwater images. The proposed technique comprises a combination of four filters such as homomorphic filtering, wavelet denoising, bilateral filter and contrast equalization. These filters are ...
متن کاملEdge detection in gravity field of the Gheshm sedimentary basin
Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR), theta angle, tilt angle, hyperbolic of tilt angle (H...
متن کاملThe blur effect: perception and estimation with a new no-reference perceptual blur metric
To achieve the best image quality, noise and artifacts are generally removed at the cost of a loss of details generating the blur effect. To control and quantify the emergence of the blur effect, blur metrics have already been proposed in the literature. By associating the blur effect with the edge spreading, these metrics are sensitive not only to the threshold choice to classify the edge, but...
متن کاملAnisotropic Ellipsoidal Smoothing of Volume Data
ing the sharp edges between them [2, 3, 4, 5]. They are appropriate for removing noise before edge detection. However, they are not as useful for filling gaps in surface-like high density regions. We developed a simple filter specifically tailored for this purpose. Briefly, we predicted the surface normal direction, and then used oblate (flattened) ellipsoidal filters, whose short axis were ori...
متن کاملBlurred Image Restoration Using Canny Edge Detection and Blind Deconvolution Algorithm
Restoring the original image from blurred or degraded image due to motion blur, noise or camera misfocus has long been a challenging problem in digital imaging. Image restoration is thus a process of recovering the actual image from the degraded image. The purpose of the paper is to restore the blurred/degraded images using blind deconvolution algorithm with canny edge detector. The task of ima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2012